GROUP 13A

MULTIPORT FUEL INJECTION (MFI)

CONTENTS

GENERAL DESCRIPTION	13A-3
MULTIPORT FUEL INJECTION (MFI)	
	13A-6
TROUBLESHOOTING STRATEGY	13A-6
DIAGNOSTIC FUNCTION	13A-6
FAIL-SAFE FUNCTION REFERENCE	
IABLE	13A-24
DIAGNOSTIC TROUBLE CODE CHART	13A-25
SYMPTOM CHART	13A-27
DIAGNOSTIC TROUBLE CODE	101.00
PROCEDURES	13A-30
SYMPTOM PROCEDURES	13A-551
DATA LIST REFERENCE TABLE	13A-723
ACTUATOR TEST REFERENCE TABLE	13A-732
CHECK AT THE ENGINE CONTROL	
	13A-734
INSPECTION PROCEDURE USING AN	134-730
	10/1-100
SPECIAL TOOLS 1	3A-751
ON-VEHICLE SERVICE 1	3A-753
COMPONENT LOCATION	13A-753
THROTTLE BODY (THROTTLE VALVE ARI	EA)
CLEANING	13A-758
THROTTLE POSITION SENSOR	
ADJUSTMENT	13A-758
BASIC IDLE SPEED ADJUSTMENT	13A-760
FUEL PRESSURE TEST	13A-762
FUEL PUMP CONNECTOR DISCONNECTI (HOW TO REDUCE PRESSURIZED	ON
FUEL LINES)	13A-765
FUEL PUMP OPERATION CHECK	13A-766

MULTIPORT FUEL INJECTION (MFI) RELAY
CONTINUITY CHECK 13A-767
FUEL PUMP RELAY CONTINUITY
FUEL PUMP RESISTOR CHECK
INTAKE AIR TEMPERATURE SENSOR
ENGINE COOLANT TEMPERATURE SENSOR
HEATED UXYGEN SENSOR CHECK 13A-771
CLUTCH PEDAL POSITION SWITCH
CHECK
FUEL PRESSURE SOLENOID CHECK 13A-776
EVAPORATIVE EMISSION PURGE SOLENOID
CHECK
EGR VACUUM REGULATOR SOLENOID VALVE
CHECK 13A-776
EVAPORATIVE EMISSION VENTILATION
SOLENOID CHECK 13A-776
TURBOCHARGER WASTEGATE SOLENOID
CHECK 13A-776
INJECTOR 134-777
REMOVAL AND INSTALLATION 15A-777
THROTTLE BODY ASSEMBLY13A-779
REMOVAL AND INSTALLATION 13A-779
DISASSEMBLY AND ASSEMBLY 13A-780

Continued on next page

ENGINE CONTROL RESISTOR, RELAY 13A-782

ENGINE CONTROL MODULE (ECM) 13A-783

ENGINE CONTROL MODULE (ECM) REMOVAL AND INSTALLATION. 13A-783

SPECIFICATIONS 13A-783

FASTENER TIGHTENING	
SPECIFICATIONS	13A-783
GENERAL SPECIFICATIONS	13A-784
SERVICE SPECIFICATIONS	13A-784
SEALANT AND ADHESIVE	13A-785

M1131000100615

GENERAL DESCRIPTION

The Multiport Fuel Injection System consists of sensors, actuators and the engine control module (ECM). The sensors detect the engine condition. The module controls the system based on signals from these sensors. The actuators work under the control of the ECM. The ECM carries out activities such as fuel injection control, idle air control, and ignition timing control. In addition, the ECM is equipped with several diagnostic test modes which simplify troubleshooting when a problem develops.

FUEL INJECTION CONTROL

The ECM controls injection drive times and injector timing to supply the optimum air/fuel mixture to the engine according to the continually-changing engine operation conditions. A single injector is mounted at the intake port of each cylinder. The fuel pump supplies pressurized fuel from the fuel tank to the fuel injectors. The fuel pressure regulator controls the fuel pressure. Thus, the regulated fuel is distributed to each injector. Fuel is normally injected for each cylinder every two rotations of the crankshaft. The firing order is 1-3-4-2. Each cylinder has a dedicated fuel injector. This is called "multiport". The ECM provides a richer air/fuel mixture by carrying out "openloop" control when the engine is cold or running under high load conditions. Thus, engine performance is maintained. In addition, when the engine is under normal operating temperature after warmingup, the ECM controls the air/fuel mixture according to the heated oxygen sensor signal. This control is a "closed-loop" control. The closed-loop control achieves the theoretical air/fuel mixture ratio where the catalytic converter can obtain the maximum cleaning performance.

IDLE AIR CONTROL

The engine control module controls the amount of air that bypasses the throttle valve according to changes in idling conditions and engine load during idling. Thus, idle speed is kept at an optimum speed. The ECM drives the idle air control (IAC) motor according to engine coolant temperature, A/C, and other electrical load. Thus, idle speed is kept at an optimum speed. In addition, when the A/C switch is turned off and on while the engine is idling, the IAC motor adjusts the throttle valve bypass air amount. Thus, idle speed is maintained at constant speed regardless of various engine load conditions.

IGNITION TIMING CONTROL

The ignition power transistor located in the ignition primary circuit turns on and off to control primary current flow to the ignition coil. This maintains ignition timing at an optimum level regardless of various engine operating conditions. The ECM determines the ignition timing according to engine speed, intake air volume, engine coolant temperature, and atmospheric pressure.

DIAGNOSTIC TEST MODE

- When a fault is detected in any of the sensors or actuators related to emission control, the Malfunction Indicator Lamp (SERVICE ENGINE SOON) illuminates to warn the driver.
- When a fault is detected in one of the sensors or actuators, a diagnostic trouble code corresponding to the fault is stored in the ECM.
- The RAM data inside the ECM that is related to the sensors and actuators can be read with the scan tool. In addition, the actuators can be controlled by the scan tool MB991502 (MUT-II) or MB991958 (MUT-III sub assembly) under certain circumstances.

OTHER CONTROL FUNCTIONS

Fuel Pump Control

• Turns the fuel pump relay ON so that current is supplied to the fuel pump while the engine is cranking or running.

A/C Compressor Clutch Relay Control

• Turns the compressor clutch of the A/C ON and OFF.

Fan Motor Control

• The radiator fan and condenser fan speeds are controlled in response to the engine coolant temperature and vehicle speed.

Fuel Pressure Control

• Supplies current to fuel pressure solenoid coil to raise the fuel pressure so that the fuel does not vaporize when the engine is started while it is warm.

Intake Charge Pressure Control

• Control the intake charge pressure by controlling the duty of the turbocharger wastegate solenoid.

Generator Output Current Control

• Prevents generator output current from increasing suddenly and idle speed from dropping at times such as when the headlights are turned on.

TSB Revision	
--------------	--

Evaporative Emission Purge Control

 (Refer to GROUP 17, Emission Control System – Evaporative Emission System – General Information P.17-12.)

EGR Control

 (Refer to GROUP 17, Emission Control System – Exhaust Gas Recirculation (EGR) System – General Information P.17-16.)

MULTIPORT FUEL INJECTION (MFI) SYSTEM DIAGRAM

NOTE: For the vacuum hose routing, refer to GROUP 17, Vacuum Hoses P.17-8.

TSB Revision	

MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

TROUBLESHOOTING STRATEGY

Use these steps to plan your diagnostic strategy. If you follow them carefully, you will be sure to have exhausted most of the possible ways to find an MFI fault.

- 1. Gather as much information as possible about the complaint from the customer.
- 2. Verify that the condition described by the customer exists.
- 3. Check the vehicle for any MFI Diagnostic Trouble Code (DTC).
- If you cannot verify the condition and there are no DTCs, the malfunction is intermittent. For information on how to cope with intermittent malfunctions, refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points – How to cope with Intermittent Malfunction P.00-6.
- 5. If you can verify the condition but there are no DTCs, or the system cannot communicate with the scan tool, refer to the trouble symptom classification table.

6. If there is a DTC, record the number of the code, then erase the code from the memory using the scan tool.

NOTE: If a DTC is erased, its "freeze frame" data will be also erased and the system readiness test status will be reset. If necessary, store the "freeze frame" data before erasing the DTC.

- 7. Reconfirm the malfunction symptom and carry out a test drive with the drive cycle pattern.
- 8. If DTC is set again, carry out an inspection with appropriate diagnostic trouble code procedures.
- If DTC is not set again, the malfunction is intermittent. For information on how to cope with intermittent malfunctions, refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points – How to cope with Intermittent Malfunction P.00-6.
- 10.After repairs are completed, conduct a road test duplicating the complaint set conditions to confirm the malfunction has been corrected.

DIAGNOSTIC FUNCTION

M1131155500029

MALFUNCTION INDICATOR LAMP (SERVICE ENGINE SOON)

Among the on-board diagnostic items, a Malfunction Indicator Lamp (SERVICE ENGINE SOON) illuminates to notify the driver of an emission control malfunction.

However, when an irregular signal returns to normal and the engine control module (ECM) judges that it has returned to normal, the Malfunction Indicator Lamp (SERVICE ENGINE SOON) is switched off.

Moreover, when the ignition switch is turned off, the lamp is switched off. Even if the ignition switch is turned on again, the lamp does not illuminate until the malfunction is detected. Immediately after the ignition switch is turned on, the Malfunction Indicator Lamp (SERVICE ENGINE SOON) is lit for 20 seconds to indicate that the Malfunction Indicator Lamp (SER-VICE ENGINE SOON) operates normally.

TSB Revision	
--------------	--

13A-6

M1131150000308

Items Indicated by the Malfunction Indicator Lamp (SERVICE ENGINE SOON)

DTC NO.	ITEMS		
-	Engine control module (ECM) malfunction		
P0090	Fuel pressure solenoid circuit		
P0101*	Volume airflow circuit range/performance problem		
P0102*	Volume airflow circuit low input		
P0106*	Barometric pressure circuit range/performance problem		
P0107*	Barometric pressure circuit low input		
P0108*	Barometric pressure circuit high input		
P0111*	Intake air temperature circuit range/performance problem		
P0112*	Intake air temperature circuit low input		
P0113*	Intake air temperature circuit high input		
P0116*	Engine coolant temperature circuit range/performance problem		
P0117*	Engine coolant temperature circuit low input		
P0118*	Engine coolant temperature circuit high input		
P0121*	Throttle position sensor circuit range/performance problem		
P0122*	Throttle position sensor circuit low input		
P0123*	Throttle position sensor circuit high input		
P0125*	Insufficient coolant temperature for closed loop fuel control		
P0128	Coolant thermostat (Coolant temperature below thermostat regulating temperature)		
P0130	Heated oxygen sensor circuit (sensor 1)		
P0131	Heated oxygen sensor circuit low voltage (sensor 1)		
P0132	Heated oxygen sensor circuit high voltage (sensor 1)		
P0133	Heated oxygen sensor circuit slow response (sensor 1)		
P0134*	Heated oxygen sensor circuit no activity detected (sensor 1)		
P0135	Heated oxygen sensor heater circuit (sensor 1)		
P0136	Heated oxygen sensor circuit (sensor 2)		
P0137	Heated oxygen sensor circuit low voltage (sensor 2)		
P0138	Heated oxygen sensor circuit high voltage (sensor 2)		
P0139	Heated oxygen sensor circuit slow response (sensor 2)		
P0141	Heated oxygen sensor heater circuit (sensor 2)		
P0171	System too lean		
P0172	System too rich		
P0181	Fuel tank temperature sensor circuit range/performance		
P0182	Fuel tank temperature sensor circuit low input		
P0183	Fuel tank temperature sensor circuit high input		
P0201	Injector circuit-cylinder 1		
P0202	Injector circuit-cylinder 2		
P0203	Injector circuit-cylinder 3		
P0204	Injector circuit-cylinder 4		
P0234	Turbocharger wastegate system malfunction		

DTC NO.	ITEMS		
P0243	Turbocharger wastegate solenoid circuit		
P0300	Random/multiple cylinder misfire detected		
P0301	Cylinder 1 misfire detected		
P0302	Cylinder 2 misfire detected		
P0303	Cylinder 3 misfire detected		
P0304	Cylinder 4 misfire detected		
P0325	Knock sensor circuit		
P0335*	Crankshaft position sensor circuit		
P0340*	Camshaft position sensor circuit		
P0401	Exhaust gas recirculation flow insufficient detected		
P0403	Exhaust gas recirculation control circuit		
P0421	Warm up catalyst efficiency below threshold		
P0441	Evaporative emission system incorrect purge flow		
P0442	Evaporative emission system leak detected (Small leak)		
P0443	Evaporative emission system purge control valve circuit		
P0446	Evaporative emission system vent control circuit		
P0451	Evaporative emission system pressure sensor range/performance		
P0452	Evaporative emission system pressure sensor low input		
P0453	Evaporative emission system pressure sensor high input		
P0455	Evaporative emission system leak detected (Gross leak)		
P0456	Evaporative emission system leak detected (Very small leak)		
P0461	Fuel level sensor circuit range/performance (sensor 1)		
P0500	Vehicle speed sensor		
P0506	Idle control system RPM lower than expected		
P0507	Idle control system RPM higher than expected		
P0551	Power steering pressure sensor circuit range/performance		
P0554	Power steering pressure sensor circuit intermittent		
P1400	Manifold differential pressure sensor circuit malfunction		
P1603*	Battery backup circuit malfunction		
P2066	Fuel level sensor circuit range/performance (sensor 2)		

NOTE: If the Malfunction Indicator Lamp (SERVICE ENGINE SOON) illuminates because of a malfunction of the engine control module (ECM), communication between the scan tool and the ECM is impossible. In this case, the diagnostic trouble code (DTC) cannot be read.

NOTE: After the ECM has detected a malfunction, the Malfunction Indicator Lamp (SERVICE ENGINE SOON) illuminates when the engine is next turned on and the same malfunction is re-detected. However, for items marked with a "*" in the DTC NO column, the Malfunction Indicator Lamp (SERVICE ENGINE SOON) illuminates on the first detection of the malfunction.

NOTE: After the Malfunction Indicator Lamp (SERVICE ENGINE SOON) illuminates, it will be switched off under the following conditions.

• When the ECM monitored the power train malfunction three times* it met set condition requirements, it detected no malfunction. *: In this case, "one time" indicates from engine start to stop.

• For misfiring or a fuel trim malfunction, when driving conditions (engine speed, engine coolant temperature, etc.) are similar to those when the malfunction was first recorded.

NOTE: Sensor 1 indicates the sensor mounted at a position closest to the engine, and sensor 2 indicates the sensor mounted at the position second closest to the engine.

HOW TO CONNECT THE SCAN TOOL (MUT-III)

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I
 - MB991827: USB Cable
 - MB991911: Main Harness B

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- 1. Ensure that the ignition switch is at the "LOCK" (OFF) position.
- 2. Start up the personal computer.
- 3. Connect special tool MB991827 to special tool MB991824 and the personal computer.
- 4. Connect special tool MB991911 to special tool MB991824.
- 5. Connect special tool MB991911 to the data link connector.
- 6. Turn the power switch of special tool MB991824 to the "ON" position.

NOTE: When the special tool MB991824 is energized, special tool MB991824 indicator light will be illuminated in a green color.

7. Start the MUT-III system on the personal computer.

NOTE: Disconnecting the scan tool MB991958 is the reverse of the connecting sequence, making sure that the ignition switch is at the "LOCK" (OFF) position.

HOW TO READ AND ERASE DIAGNOSTIC TROUBLE CODE

<WHEN USING THE MUT-II>

Required Special Tool:

• MB991502: Scan Tool (MUT-II)

To prevent damage to scan tool MB991502, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991502.

NOTE: If Battery positive voltage is low, diagnostic trouble codes may not be output. Be sure to check the battery and charging system before continuing.

NOTE: If battery cable is disconnected or if the engine control module (ECM) connector is disconnected, the diagnostic trouble codes will be erased. Do not disconnect the battery cable or ECM connector until the diagnostic trouble codes have been recorded.

NOTE: If a DTC is erased, its "freeze frame" data will be also erased and the system readiness test status will be reset. If necessary, store the "freeze frame" data before erasing the DTC.

- 1. Connect scan tool MB991502 to the data link connector.
- 2. Turn the ignition switch to the "ON" position.
- 3. Read the diagnostic trouble codes for MFI.
- 4. Refer to the DIAGNOSTIC TROUBLE CODE CHART(P.13A-25).
- 5. Turn the ignition switch to the "LOCK" (OFF) position and then back to "ON" again.
- 6. Erase the diagnostic trouble code(s) using MB991502 screen prompts.
- 7. Confirm that the diagnostic trouble code output is normal.
- 8. Turn the ignition switch to the "LOCK" (OFF) position.
- 9. Disconnect scan tool MB991502 from the data link connector.

<WHEN USING THE MUT-III>

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I
 - MB991827: USB Cable
 - MB991911: Main Harness B

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

NOTE: If the battery voltage is low, diagnostic trouble codes will not be set. Check the battery if scan tool MB991958 does not display.

- 1. Connect scan tool MB991958 to the data link connector.
- 2. Turn the ignition switch to the "ON" position.
- 3. Select "Interactive Diagnosis" from the start-up screen.
- 4. Select "System select."
- 5. Choose "MFI" from the "POWER TRAIN" tab.
- 6. Select "MITSUBISHI."
- 7. Select "Diagnostic Trouble Code"
- 8. If a DTC is set, it is shown.
- 9. Choose "Erase DTCs" to erase the DTC.

PROVISIONAL DTCs [SCAN TOOL MB991502 or MB991958 OBD-II Test Mode – Results (Mode 7)]

The scan tool will display the Provisional DTCs reported by engine control module (ECM) if the ECM detects some malfunction for "Misfire", "Fuel System" and "Comprehensive" monitoring during a SINGLE Driving Cycle. The intended use of this data is to assist the technician after a vehicle repair, and after clearing diagnostic information, by reporting test result after a SINGLE Driving Cycle. Note that the test results reported by this mode do not necessarily indicate a faulty component/system. If test results indicate a failure after ADDI-TIONAL (consecutive) driving, then the Malfunction Indicator Lamp (SERVICE ENGINE SOON) will be illuminated and a DTC will set.

MODE 6 REFERENCE TABLE

The engine control module (ECM) monitors the condition of emission control system.

By selecting MODE 6 using scan tool, Test Result and Limit Value (minimum) *1 or (maximum) *2 about the main items of emission control system which ECM monitors can be confirmed. The value at the last monitoring is output by ECM as a test result.

TEST ID	MONITORING ITEM	SIMPLE TECHNICAL DESCRIPTION	INDICATION OF SCAN TOOL	CONVERSION COEFFICIENT IN USING GENERAL SCAN TOOL
01	Catalyst monitor	ECM monitors the deterioration of catalyst by the output frequency ratio between heated oxygen sensor (front) and heated oxygen sensor (rear).	Catalyst Frequency Ratio Test Result and Limit Value (max.)	× 0.0039
03	EGR monitor	ECM monitors the operation of EGR system by the pressure difference of intake manifold between before and after introduction of EGR using the manifold differential pressure sensor.	EGR Monitor Pressure Value Test Result and Limit Value (min.) kPa	× 0.43 kPa
06	Evaporation leak monitor (Small leak)	After PCM vacuumizes the fuel tank and the fuel line and then the specified time is passed, PCM monitors the leak of fuel evaporation gas through the fuel tank differential pressure sensor to check the reduction of vacuum in the fuel tank.	EVAP Leak Mon. 1 mm Pressure Value Test Result and Limit Value (max.) kPa	× 0.032 kPa
07	Evaporation leak monitor (Gross leak)	ECM monitors the leak of fuel evaporation gas by checking whether the pressure can be reduced (the amount of pressure reduction) using the fuel tank differential pressure sensor after sealing the fuel tank and the fuel line.	EVAP Leak Mon. Gross Pressure Value Test Result and Limit Value (min.) kPa	× 0.032 kPa

TEST ID	MONITORING ITEM	SIMPLE TECHNICAL DESCRIPTION	INDICATION OF SCAN TOOL	CONVERSION COEFFICIENT IN USING GENERAL SCAN TOOL
08	Evaporation leak monitor (Very small leak)	After PCM vacuumizes the fuel tank and the fuel line and then the specified time is passed, PCM monitors the leak of fuel evaporation gas through the fuel tank differential pressure sensor to check the reduction of vacuum in the fuel tank.	EVAP Leak Mon. 0.5 mm Pressure Value Test Result and Limit Value (max.) kPa	× 0.032 kPa
09	Heated oxygen sensor (front) monitor (Rich/ Lean Switching)	ECM monitors the deteriorated condition of the heated oxygen sensor (front) by checking the lean/rich switching frequency of the heated oxygen sensor (front).	HO2S B1 SENSOR1 Rich/Lean Switching Count Test Result and Limit Value (min.)	× 1 count
OB	Heated oxygen sensor (rear) monitor (Voltage Change)	The engine control unit checks the output voltage of the heated oxygen sensor (rear) in order to monitor whether the heated oxygen sensor (rear) output is stuck.	HO2S B1 SENSOR2 Change in Volt Test Result and Limit Value (min.)	× 19.5 mV

NOTE: *1: Minimum value: The test fails if test value is less than this value.

NOTE: *2: Maximum value: The test fails if test value is greater than this value.

DIAGNOSTIC BY DIAGNOSTIC TEST MODE II (INCREASED SENSITIVITY)

Required Special Tools:

- MB991502: Scan Tool (MUT-II)
- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991911: Main Harness B

To prevent damage to scan tool MB991502 or MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991502 or MB991958.

NOTE: When mode II is selected with scan tool MB991502 (MUT-II) or MB991958 (MUT-III sub assembly), the Malfunction Indicator Lamp (SERVICE ENGINE SOON) will light when the engine control module (ECM) first detects the trouble (Note that this is only for emission-related trouble). At the same time, the relevant diagnostic trouble codes will be registered. In respect to the comprehensive component electrical faults (opens/ shorts), the time for the diagnostic trouble code to be registered after the fault occurrence is four seconds \rightarrow one second. Therefore, the confirmation of the trouble symptom and the confirmation after completing repairs can be reduced. To return to the normal mode I after mode II has been selected once, the ignition switch must be turned "OFF" once or mode I must be reselected with scan tool MB991502 (MUT-II) or MB991958 (MUT-III sub assembly). The diagnostic trouble code, system readiness test status and freeze frame data, etc., will be erased when mode I is returned to, so record these before returning to mode 1.

- 1. Connect scan tool MB991502 or MB991958 to the data link connector.
- 2. Turn the ignition switch to the "ON" position.
- 3. Change the diagnostic test mode of the ECM to DIAGNOSTIC TEST MODE II (INCREASED SENSITIVITY).
- 4. Road test the vehicle.
- 5. Read the diagnostic trouble code and repair the malfunctioning part.
- 6. Turn the ignition switch to the "LOCK" (OFF) position.
- 7. Disconnect scan tool MB991502 or MB991958 from the data link connector.

INSPECTION USING SCAN TOOL MB991502 or MB991958, DATA LIST AND ACTUATOR TESTING

<WHEN USING THE SCAN TOOL MB991502>

Required Special Tool:

• MB991502: Scan Tool (MUT-II)

To prevent damage to scan tool MB991502, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991502.

- 1. Connect scan tool MB991502 to the data link connector.
- 2. Turn the ignition switch to the "ON" position.
- Carry out inspection by means of the data list and the actuator test function. If there is an abnormality, check and repair the chassis harnesses and components. Refer to Data List Reference Table (P.13A-723).
 Refer to Actuator Test Reference Table (P.13A-732).
- 4. Re-check using scan tool MB991502 and check to be sure that the abnormal input and output have returned to normal because of the repairs.
- 5. Erase the diagnostic trouble code(s).
- 6. Turn the ignition switch to the "LOCK" (OFF) position.
- 7. Disconnect scan tool MB991502 from the data link connector.
- 8. Start the engine again and do a test drive to confirm that the problem is eliminated.

<WHEN USING THE SCAN TOOL MB991958>

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991911: Main Harness B

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- 1. Connect scan tool MB991958 to the data link connector.
- 2. Turn the ignition switch to the "ON" position.
- 3. Select "Interactive Diagnosis" from the start-up screen.
- 4. Select "System select."
- 5. Choose "MFI" from the "POWER TRAIN" tab.
- 6. Select "MITSUBISHI."
- 7. Select "Data List" or "Actuator Test."
- 8. Choose an appropriate item and select the "OK" button.

TSB	Revision	

ON-BOARD DIAGNOSTICS

The engine control module (ECM) monitors the input/output signals (some signals all the time and others under specified conditions) of the ECM. When a malfunction continues for a specified time or longer after the irregular signal is initially monitored, the ECM judges that a malfunction has occurred. After the ECM first detects a malfunction, a diagnostic trouble code is recorded when the engine is restarted and the same malfunction is re-detected. However, for items marked with a "*", a diagnostic trouble code is recorded on the first detection of the malfunction. There are 71 diagnostic items. The diagnostic results can be read out with a scan tool. Since memorization of the diagnostic trouble codes is backed up directly by the battery, the diagnostic results are memorized even if the ignition key is turned off. The diagnostic trouble codes will, however, be erased when the battery terminal or the ECM connector is disconnected. In addition, the diagnostic trouble code erase signal from scan tool to the ECM.

NOTE: If the sensor connector is disconnected with the ignition switch turned on, the diagnostic trouble code is memorized. In this case, send the diagnostic trouble code erase signal to the ECM in order to erase the diagnostic memory. The 71 diagnostic items are all indicated sequentially from the smallest code number. The ECM records the engine operating condition when the diagnostic trouble code is set. This data is called "Freeze-frame" data. This data can be read by using the scan tool, and can then be used in simulation tests for troubleshooting. Data items are as follows:

NOTE: If the ECM detects multiple malfunctions, the ECM stores the data for only the first item that was detected.

However, if the ECM detects a misfire or a fuel system malfunction, the ECM stores the data by giving priority to the misfire or fuel system malfunction, regardless of the order in which the malfunction was detected. NOTE: As for Diagnostic trouble code P1603. "freeze frame" data is not memorized.

SCAN TOOL DISPLAY	ITEM NO.	DATA ITEM	UNIT or STATE
ECT SENSOR	21	Engine coolant temperature sensor	°C or °F
ENGINE LOAD	87	Calculated load value	%
ENGINE SPEED	22	Crankshaft position sensor	r/min
IAT SENSOR	13	Intake air temperature sensor	°C or °F
ig. Timing ADV	44	Ignition coils and ignition power transistor	deg
LONG TRIM B1	81	Long-term fuel trim	%
SHORT TRIM B1	82	Short-term fuel trim	%
SYS. STATUS B1	88	Fuel system status	 Open loop Closed loop Open loop-drive condition Open loop-DTC set Closed loop-O₂ (rear) failed
TP SENSOR	8A	Throttle position sensor	%
VAF SENSOR	12	Volume airflow sensor (mass airflow rate)	gm/s
VSS	24	Vehicle speed sensor	km/h or mph

OBD- II DRIVE CYCLE

All kinds of diagnostic trouble codes (DTCs) can be monitored by carrying out a short drive according to the following six drive cycle pattern. In other words, doing such a drive regenerates any kind of trouble which involves illuminating the Malfunction Indicator Lamp (SERVICE ENGINE SOON) and verifies the repair procedure has eliminated the trouble (the Malfunction Indicator Lamp (SERVICE ENGINE SOON) is no longer illuminated).

Two technicians should always be in the vehicle when carrying out a test drive.

NOTE: Check that the diagnosis trouble code (DTC) is not output before driving the OBD-II drive cycle. Erase the DTC if it has been output.

PROCEDURE	MONITOR ITEM		DIAGNOSTIC TROUBLE CODE (DTC)
1	Evaporative emission system leak monitor		P0441, P0442, P0451, P0452, P0453, P0455, P0456
2	Fuel trim monitor		P0171,P0172
3	Catalytic converter monitor		P0421
4	Heated oxygen sensor monitor		P0133, P0139
5	Exhaust gas recirculation (EGR) system monitor		P0401
6	Other monitor	Main components	P0134, P0300, P0301, P0302, P0303, P0304, P0506, P0507, P1400
		Sensors and switches	P0101, P0102, P0106, P0107, P0108, P0111, P0112, P0113, P0116, P0117, P0118, P0121, P0122, P0123, P0125, P0181, P0182, P0183, P0335, P0340, P0461, P2066
		Wire breakage and short circuit	P0090, P0130, P0131, P0132, P0135, P0136, P0137, P0138, P0141, P0201, P0202, P0203, P0204, P0243, P0403, P0443, P0446

DRIVE CYCLE PATTERN LIST

PROCEDURE 1

EVAPORATIVE EMISSION SYSTEM LEAK MONITOR		
Test procedure	 Engine: start Accelerate until the vehicle speed is 89 – 97 km/h (55 – 60 mph). Travel for 200 seconds or more while keeping the vehicle speed at 89 – 97 km/h (55 – 60 mph). (M/T: 5th speed) While keeping the accelerator pedal opening degree constant, keep the vehicle speed at 89 – 97 km/h (55 – 60 mph) and travel for 150 seconds or more. (During monitor) Return the vehicle to the shop, then turn the ignition switch to "LOCK" (OFF) position. Confirm that the diagnostic trouble code (DTC) is not output. If DTC P0441 is output, refer to GROUP 13A, DTC P0441 – Evaporative Emission System Incorrect Purge Flow P.13A-358. If DTC P0442 is output, refer to GROUP 13A, DTC P0442 – Evaporative Emission System Leak Detected (Small Leak) P.13A-345. If DTC P0451 is output, refer to GROUP 13A, DTC P0451 – Evaporative Emission System Pressure Sensor Range/ performance P.13A-380. If DTC P0452 is output, refer to GROUP 13A, DTC P0452 – Evaporative Emission System Pressure Sensor Low Input P.13A-397. If DTC P0453 is output, refer to GROUP 13A, DTC P0453 – Evaporative Emission System Pressure Sensor Low Input P.13A-414. If DTC P0455 is output, refer to GROUP 13A, DTC P0455 – Evaporative Emission System Leak Detected (Gross Leak) P.13A-414. If DTC P0455 is output, refer to GROUP 13A, DTC P0455 – Evaporative Emission System Leak Detected (Gross Leak) P.13A-431. If DTC P0456 is output, refer to GROUP 13A, DTC P0456 – Evaporative Emission System Leak Detected (Very Small Leak) P.13A-447. 	

PROCEDURE 2

FUEL TRIM N	IONITOR			
DTC	P0171, P0172			
Drive cycle pattern	This monitor [from start to ignition switch to the "LOCK" (OFF) position] will be completed while driving the vehicle with the following drive cycle pattern. It will take 35 minutes. You must complete this drive twice.			
	NOTE: Vehicle speed and throttle opening angle should be within the shaded range.			
	30 MINUTES OR MORE 89 - 97 km/h (55 - 60 mph) M/T: 5TH SPEED			
	VEHICLE SPEED km/h (mph)			
	LOAD (%) 50 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0			
Inspection conditions	 Engine coolant temperature: 80 – 97°C (176 – 207°F) Atmospheric temperature: -10 – 60°C (14 – 140°F) 			
Test procedure	 Engine: start Accelerate until the vehicle speed is 89 – 97 km/h (55 – 60 mph). Travel for 30 minutes or more while keeping the vehicle speed at 89 – 97 km/h (55 – 60 mph). (M/T: 5th speed) Carry out one gradual deceleration/acceleration returning to 89 – 97 km/h (55 – 60 mph) within 120 seconds. (During monitor) Return the vehicle to the shop, then turn the ignition switch to "LOCK" (OFF) position. Confirm that the diagnostic trouble code (DTC) is not output. If DTC P0171 is output, refer to GROUP 13A, DTC P0171 – System too lean P.13A-232. .If DTC P0172 is output, refer to GROUP 13A, DTC P0172 – System too rich P.13A-240. 			

TSB Revision

PROCEDURE 3

CATALITIC	
DTC	P0421
Drive cycle pattern	This monitor [from start to ignition switch to the "LOCK" (OFF) position] will be completed while driving the vehicle with the following drive cycle pattern. It will take 20 minutes. You must complete this drive twice. NOTE: Vehicle speed and throttle opening angle should be within the shaded range.
	300 SECONDS OR MORE 72 - 97 km/h (45 - 60 mph) /M/T: 5TH SPEED
	90 SECONDS OR MORE 56 - 64 km/h (35 - 40 mph) M/T: 4TH SPEED
	64 (40) PREPARATION PERIOD (5) (5) (5) VEHICLE SPEED km/h (mph) (2) PREPARATION PERIOD (4) (6) (6) (6) (6) (6) (7) (1) <t< td=""></t<>
	0 L MINE ENGINE START 100 CALCULATED LOAD (%) 50
la su sti su	0
Inspection	 Atmospheric temperature: -10°C (14°F) or more A/C switch: OFF
Test procedure	 Engine: start Accelerate until the vehicle speed is 72 km/h (45 mph). Travel for 300 seconds or more while keeping the vehicle speed at 72 – 97 km/h (45 – 60 mph). (M/ T: 5th speed) Decelerate until the vehicle speed is within 56 – 64 km/h (35 – 40 mph). While keeping the accelerator pedal opening degree constant (M/T: 4th speed), keep the vehicle speed at 56 – 64 km/h (35 – 40 mph) and travel for 90 seconds or more. (During monitor) Fully close the throttle and decelerate, and keep the deceleration state for 10 seconds. Then, quickly accelerate until the vehicle speed reaches 56 – 64 km/h (35 – 40 mph). Then, repeat steps 5 and 6, and complete six monitor sessions. Return the vehicle to the shop, then turn the ignition switch to "LOCK" (OFF) position. Confirm that the diagnostic trouble code (DTC) is not output. If DTC P0421 is output, refer to GROUP 13A, DTC P0421 – Warm Up Catalyst Efficiency Below Threshold (Bank 1) P.13A-337.

PROCEDURE 4

TSB Revision	
--------------	--

PROCEDURE 5

EXHAUST GA	AS RECIRCULATION (EGR) SYSTEM MONITOR
DTC	P0401
Drive cycle pattern	This monitor [from start to ignition switch to the "LOCK" (OFF) position] will be completed while driving the vehicle with the following drive cycle pattern. It will take 10 minutes. You must complete this drive twice. NOTE: Vehicle speed and throttle opening angle should be within the shaded range.
	20 SECONDS OR MORE 56 - 64 km/h (35 - 40 mph) M/T: 4TH SPEED
	VEHICLE SPEED km/h (mph) 0 CALCULATED LOAD (%) 50 0 CALCULATED LOAD (%) 50 0 CALCULATED
	ERATION ERATION ERATION ERATION ERATION AKX01349ac
Inspection conditions	 Engine coolant temperature: 80°C (176°F) or more Atmospheric temperature: 5°C (41°F) or more A/C switch: OFF
Test procedure	 Engine: start Accelerate until the vehicle speed is 56 – 64 km/h (35 – 40 mph). Travel for 20 seconds or more while keeping the vehicle speed at 56 – 64 km/h (35 – 40 mph). (M/ T: 4th speed) Fully close the throttle from an engine speed of 2,000 – 3,000 r/min, and while keeping the clutch engaged, decelerate to approximately 900 r/min without applying the brakes. Do not steer the handle or turn the light ON/OFF during this time. (During monitor) Accelerate until the vehicle speed reaches 56 – 64 km/h (35 – 40 mph), and travel for 20 seconds or more (M/T: 4th speed). Then, repeat steps 4 and 5 and complete 8 monitor sessions. Return the vehicle to the shop, then turn the ignition switch to "LOCK" (OFF) position. Confirm that the diagnostic trouble code (DTC) is not output. If DTC P0401 is output, refer to GROUP 13A, DTC P0401 – Exhaust Gas Recirculation Flow Insufficient detected P.13A-328.

PROCEDURE 6

OTHER MONI	TOR (Main components, sensors and switches, wire breakage and short circuit)
DTC	 Main components: P0134, P0300, P0301, P0302, P0303, P0304, P0506, P0507, P1400 Sensors and switches: P0101, P0102, P0106, P0107, P0108, P0111, P0112, P0113, P0116, P0117, P0118, P0121, P0122, P0123, P0125, P0181, P0182, P0183, P0335, P0340, P0461, P2066 Wire breakage and short circuit: P0090, P0130, P0131, P0132, P0135, P0136, P0137, P0138, P0141, P0201, P0202, P0203, P0204, P0243, P0403, P0443, P0446
Drive cycle pattern	This monitor [from start to ignition switch to the "LOCK" (OFF) position] will be completed while driving the vehicle with the following drive cycle pattern. It will take 10 minutes. You must complete this drive twice. NOTE: Drive according to the graph below.
	VEHICLE 32 SPEED (20) (20) (20) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
Inspection	AKX01350 AC
conditions	 Atmospheric temperature: 5°C (41°F) or more
Test procedure	 Engine: start Accelerate until the vehicle speed is 56 – 64 km/h (35 – 40 mph), and travel for 300 seconds or more. (M/T: 4th speed) Return the vehicle to the shop. After stopping the vehicle, continue idling for 300 seconds, and then turn the ignition switch to the "LOCK" (OFF) position. Moreover, the vehicle should be set to the following conditions for idling. A/C switch: OFF Lights and all accessories: OFF Transmission: Neutral Steering wheel: Straightforward position Confirm that the diagnostic trouble code (DTC) is not output. If a DTC is displayed, refer to Diagnostic Trouble Code Chart P.13A-25.

SYSTEM READINESS TEST STATUS

PURPOSE

The Readiness function (also referred to as I/M Readiness or I/M Flags) indicates if a full diagnostic check has been "Completed" (is "Ready") for each non-continuous monitor. Enhanced I/M State Emission Programs will use the Readiness status (Codes) to see if the vehicle is ready for OBD-II testing. "Incomplete" (Not Ready) codes will be one of the triggers for I/M failure.

OVERVIEW

The engine control module (ECM) monitors the following main diagnosis items and records whether the evaluation was completed or is incomplete. The Readiness codes were established for the I/M programs, thereby confirming that the vehicle was not tampered with by erasing the diagnostic trouble code(s) (DTC's) before I/M testing. The Readiness and DTC codes can be reset by disconnecting the battery or by erasing the codes with a scan tool. For this reason all Readiness codes must read "Complete" before I/M testing. When the monitors run and complete, the scan tool will record the Readiness Code as "Complete" (General Scan Tools record as "Ready"). If the monitor did not run completely, the system then reads as "Incomplete" (General Scan Tools record as "Not Ready"). When the vehicle is operating normally and the OBD-II Drive Cycle is carried out, Readiness Code will set as "Complete" on the first drive cycle. If during the first drive cycle a fault is detected then, a second drive is required before the Readiness Code will "Complete." If the fault is still there, then a DTC will set.

- Catalyst: P0421
- Evaporative system: P0442, P0455, P0456
- Heated oxygen sensor: P0133
- Heated oxygen sensor heater: P0135, P0141
- EGR system: P0401

After the Readiness is "Complete," the technician is assured that any DTC's associated with that monitor will be displayed if the system has a problem. That is why some State's I/M programs require the Readiness Code as "Complete" before they check for DTC's.

NOTE: After a repair is mode for a DTC the technician should drive the OBD-II drive cycle checking that the MB991502 or MB991958 records all Readiness as "Complete".

FAIL-SAFE FUNCTION REFERENCE TABLE

M1131153000181

When the main sensor malfunctions are detected by the diagnostic test mode, the vehicle is controlled by means of the following defaults.

MALFUNCTION ITEM	CONTROL CONTENTS DURING MALFUNCTION	
Volume airflow sensor	 Uses the throttle position sensor signal and engine speed signal (crankshaft position sensor signal) for basic injector drive time and basic ignition timing from the pre-set mapping. Fixes the IAC motor in the appointed position so idle air control is not performed. 	
Intake air temperature sensor	Controls as if the intake air temperature is 25°C (77°F).	
Throttle position sensor	No increase in fuel injection amount during acceleration due to the unreliable throttle position sensor signal.	
Engine coolant temperature sensor	Controls as if the engine coolant temperature is 80°C (176°F). (This control will be continued until the ignition switch is turned to the "LOCK" (OFF) position even though the sensor signal returns to normal.)	
Camshaft position sensor	Injects fuel into the cylinders in the order 1-3-4-2 with irregular timing. (After the ignition switch is turned to the "ON," the No.1 cylinder top dead center is not detected at all.)	
Barometric pressure sensor	Controls as if the barometric pressure is 101 kPa (30 in Hg).	
Knock sensor	Switches the ignition timing from ignition timing for high octane to ignition timing for standard octane fuel.	

MALFUNCTION ITEM	CONTROL CONTENTS DURING MALFUNCTION
Heated oxygen sensor <front></front>	Air/fuel ratio closed loop control is not performed.
Heated oxygen sensor <rear></rear>	Performs the closed loop control of the air/fuel ratio by using only the signal of the heated oxygen sensor (front) installed on the front side of the catalytic converter.
Generator FR terminal	Does not restrict the generator output with respect to electrical load (to be operated as an ordinary generator).
Misfire detection	The ECM stops supplying fuel to the cylinder with the highest misfiring rate if a misfiring that could damage the catalytic converter is detected.

DIAGNOSTIC TROUBLE CODE CHART

M1131151000453

DTC	DIAGNOSTIC ITEMS	REFERENCE PAGE	
P0090	Fuel pressure solenoid circuit P.13A-30		
P0101*	Volume airflow circuit range/performance problem P.13A-38		
P0102*	Volume airflow circuit low input	P.13A-45	
P0106*	Barometric pressure circuit range/performance problem	P.13A-53	
P0107*	Barometric pressure circuit low input	P.13A-59	
P0108*	Barometric pressure circuit high input	P.13A-73	
P0111*	Intake air temperature circuit range/performance problem	P.13A-83	
P0112*	Intake air temperature circuit low input	P.13A-90	
P0113*	Intake air temperature circuit high input	P.13A-94	
P0116*	Engine coolant temperature circuit range/performance problem	P.13A-101	
P0117*	Engine coolant temperature circuit low input P.13A-111		
P0118*	Engine coolant temperature circuit high inputP.13A-115		
P0121*	Throttle position sensor circuit range/performance problemP.13A-123		
P0122*	Throttle position sensor circuit low inputP.13A-132		
P0123*	Throttle position sensor circuit high inputP.13A-140		
P0125*	Insufficient coolant temperature for closed loop fuel control P.13A-147		
P0128	Coolant thermostat (coolant temperature below thermostat regulating P.13A-155 temperature)		
P0130	Heated oxygen sensor circuit (sensor 1)	P.13A-156	
P0131	Heated oxygen sensor circuit low voltage (sensor 1)	P.13A-170	
P0132	Heated oxygen sensor circuit high voltage (sensor 1)	P.13A-176	
P0133	Heated oxygen sensor circuit slow response (sensor 1)	P.13A-180	
P0134*	Heated oxygen sensor circuit no activity detected (sensor 1)P.13A-185		
P0135	Heated oxygen sensor heater circuit (sensor 1)P.13A-192		
P0136	Heated oxygen sensor circuit (sensor 2)	P.13A-201	
P0137	Heated oxygen sensor circuit low voltage (sensor 2)	P.13A-211	
P0138	Heated oxygen sensor circuit high voltage (sensor 2)	P.13A-216	

13A-26

MULTIPORT FUEL INJECTION (MFI) MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

DTC	DIAGNOSTIC ITEMS REFEREN PAGE		
P0139	Heated oxygen sensor circuit slow response (sensor 2)P.13A-220		
P0141	Heated oxygen sensor heater circuit (sensor 2)P.13A-224		
P0171	System too lean	P.13A-232	
P0172	System too rich	P.13A-240	
P0181	Fuel tank temperature sensor circuit range/performance	P.13A-246	
P0182	Fuel tank temperature sensor circuit low input	P.13A-254	
P0183	Fuel tank temperature sensor circuit high input	P.13A-259	
P0201	Injector circuit-Cylinder 1	P.13A-267	
P0202	Injector circuit-Cylinder 2	P.13A-267	
P0203	Injector circuit-Cylinder 3	P.13A-267	
P0204	Injector circuit-Cylinder 4	P.13A-267	
P0234	Turbocharger wastegate system malfunction	P.13A-277	
P0243	Turbocharger wastegate solenoid circuit	P.13A-279	
P0300	Random/multiple cylinder misfire detected	P.13A-286	
P0301	Cylinder 1 misfire detected	ected P.13A-292	
P0302	Vlinder 2 misfire detected P.13A-292		
P0303	Cylinder 3 misfire detected P.13A-292		
P0304	Cylinder 4 misfire detected P.13A-292		
P0325	Knock sensor circuit P.13A-296		
P0335*	Crankshaft position sensor circuit P.13A-302		
P0340*	Camshaft position sensor circuit P.13A-317		
P0401	Exhaust gas recirculation flow insufficient detectedP.13A-328		
P0403	Exhaust gas recirculation control circuit P.13A-330		
P0421	Warm up catalyst efficiency below threshold	P.13A-337	
P0441	Evaporative emission system incorrect purge flow	P.13A-358	
P0442	Evaporative emission system leak detected (Small leak)	P.13A-345	
P0443	Evaporative emission system purge control valve circuit	P.13A-363	
P0446	Evaporative emission system vent control circuit	m vent control circuit P.13A-371	
P0451	Evaporative emission system pressure sensor range/performance	range/performance P.13A-380	
P0452	Evaporative emission system pressure sensor low input P.13A-397		
P0453	Evaporative emission system pressure sensor high input P.13A-414		
P0455	Evaporative emission system leak detected (Gross leak) P.13A-431		
P0456	Evaporative emission system leak detected (Very small leak) P.13A-447		
P0461	Fuel level sensor circuit range/performance (sensor 1)	P.13A-459	
P0500	Vehicle speed sensor	P.13A-465	
P0506	Idle control system RPM lower than expected P.13A-477		

DTC	DIAGNOSTIC ITEMS	REFERENCE PAGE	
P0507	Idle control system RPM higher than expected	P.13A-487	
P0513	Immobilizer malfunction	P.13A-496	
P0551	Power steering pressure sensor circuit range/performance	P.13A-500	
P0554	Power steering pressure sensor circuit intermittent P.13A-510		
P0622	Generator FR terminal circuit malfunction P.13A-516		
P0830	Clutch pedal position switch circuit range/performance P.13A-523		
P1400	Manifold differential pressure sensor circuit malfunction	pressure sensor circuit malfunction P.13A-530	
P1603*	Battery backup circuit malfunction	P.13A-538	
P2066	Fuel level sensor circuit range/performance (sensor 2)P.13A-523		
P2263	Intake charge system malfunction		

NOTE: Do not replace the engine control module (ECM) until a through terminal check reveals there are no short/open circuits.

NOTE: Check that the ECM ground circuit is normal before checking for the cause of the problem.

NOTE: After the ECM detects a malfunction, a diagnostic trouble code is recorded the next time the engine is started and the same malfunction is re-detected. However, for items marked with a "*," the diagnostic trouble code is recorded on the first detection of the malfunction.

NOTE: Sensor 1 indicates the sensor mounted at a position closest to the engine, and sensor 2 indicates the sensor mounted at the position second closest to the engine.

SYMPTOM CHART

M1131151500447

NOTE: Check that the engine control module (ECM) ground circuit is normal before checking for the cause of the problem.

SYMPTOMS		INSPECTION PROCEDUR E	REFERENCE PAGE
Communication	Communication with all systems is not possible	1	P.13A-551
impossible	Communication with ECM only is not possible	2	P.13A-554
MalfunctionThe malfunction indicator lamp (SERVICE ENGINEIndicator LampSOON) does not illuminate right after the ignition(SERVICEswitch is turned to the "ON" position		3	P.13A-557
ENGINE SOON) and related parts	The malfunction indicator lamp (SERVICE ENGINE SOON) remains illuminated and never goes out	4	P.13A-562
Starting	Cranks, won't start	5	P.13A-565
	Starts up and dies	6	P.13A-570
	Hard starting	7	P.13A-577
Idling stability	Unstable idle (rough idle, hunting)	8	P.13A-582
(Improper idlina)	Idle speed is high (improper idle speed)	9	P.13A-590
	Idle speed is low (improper idle speed)	10	P.13A-593

SYMPTOMS		INSPECTION PROCEDUR E	REFERENCE PAGE
Idling stability	When the engine is cold, it stalls at idle (die out)	11	P.13A-596
(engine stalls)	When the engine is hot, it stalls at idle (die out)	12	P.13A-601
	The engine stalls when accelerating (pass out)	13	P.13A-608
	The engine stalls when decelerating	14	P.13A-610
Driving	Hesitation, sag or stumble	15	P.13A-614
	Acceleration shock	16	P.13A-620
	Deceleration shock	17	P.13A-621
	Poor acceleration	18	P.13A-623
	Surge	19	P.13A-629
	Knocking	20	P.13A-635
Dieseling (Run-on)		21	P.13A-637
Too high CO and HC concentration when idling		22	P.13A-637
IM240 test	Transient, mass emission tailpipe test failure	23	P.13A-641
Tallure	Purge flow test of the evaporative emission canister failure	24	P.13A-648
	Pressure test of the evaporative system failure	25	P.13A-649
Generator outpu	It voltage is low (approximately 12.3 volts)	26	P.13A-651
Improper idle sp	eed when the A/C is on (A/C switch 2 signal)	27	P.13A-655
Radiator fan is i	noperative	28	P.13A-657
A/C condensor fan is inoperative		29	P.13A-660
Power supply system and ignition switch-IG system		30	P.13A-663
Fuel pump system		31	P.13A-671
Ignition switch – ST system		32	P.13A-688
Ignition circuit sy	ystem	33	P.13A-695
A/C system		34	P.13A-703
Charge air coole	er water spray system	35	P.13A-706
Charge air cooler water spray lamp system		36	P.13A-718

PROBLEM SYMPTOMS TABLE (FOR YOUR INFORMATION)

ITEMS		SYMPTOM
Starting	Won't start	The starter is used to crank the engine, but there is no combustion within the cylinders, and the engine won't start.
	Starts up and dies	The engine starts, but then the engine soon stalls.
	Hard starting	Engine starts after cranking a while.

TSB Revision

ITEMS		SYMPTOM	
Idling stability	Hunting	Engine speed doesn't remain constant; changes at idle.	
	Rough idle	Usually, a judgement can be based upon the movement of the tachometer pointer, and the vibration transmitted to the steering wheel, shift lever, body, etc.	
	Incorrect idle speed	The engine doesn't idle at the correct speed.	
	Engine stall (die out)	The engine stalls when the foot is taken from the accelerator pedal, regardless of whether the vehicle is moving or not.	
	Engine stall (pass out)	The engine stalls when the accelerator pedal is depressed.	
Driving	Hesitation Sag	"Hesitation " is the delay in response of the vehicle speed (engine speed). This occurs when the accelerator is depressed in order to accelerate from the speed at which the vehicle is now traveling, or a temporary drop in vehicle speed (engine speed) during such acceleration. Serious hesitation is called "sag".	
	Poor acceleration	Poor acceleration is inability to obtain an acceleration corresponding to the degree of throttle opening, even though acceleration is smooth or the inability to reach maximum speed.	
	Stumble	Engine speed increase is delayed when the accelerator pedal is initially depressed for acceleration.	
	Shock	The feeling of a comparatively large impact or vibration when the engine is accelerated or decelerated.	
	Surge	This is slight acceleration and deceleration feel usually felt during steady, light throttle cruise. Most notable under light loads.	
	Knocking	A sharp sound during driving, which sounds like a hammer striking the cylinder walls. It makes poor driveability.	
Stopping	Dieseling (run on)	The condition in which the engine continues to run after the ignition switch is turned to the "LOCK" (OFF) position. Also called " dieseling. "	

TSB Revision

DIAGNOSTIC TROUBLE CODE PROCEDURES

DTC P0090: FUEL PRESSURE SOLENOID CIRCUIT

Fuel Pressure Solenoid Circuit

AK203463

CIRCUIT OPERATION

- The fuel pressure solenoid power is supplied from the MFI relay (terminal No. 4).
- The ECM controls the fuel pressure solenoid ground by turning the power transistor in the ECM "ON" and "OFF".

TECHNICAL DESCRIPTION

- To judge if there is open circuit in the fuel pressure solenoid drive circuit, ECM measures the surge voltage of the fuel pressure solenoid coil.
- The ECM drives the fuel pressure solenoid. After the solenoid is turned off, the ECM will check if the solenoid coil produces a surge voltage of 2 volts or more.

DTC SET CONDITIONS

Check Conditions

- Engine is being cranked.
- Battery positive voltage is at between 10 and 16 volts.

Judgment Criteria

- The fuel pressure solenoid coil surge voltage (battery positive voltage + 2 volts) is not detected for 0.2 second.
- The ECM monitors for this condition once during the drive cycle.

Check Conditions

- Battery positive voltage is at between 10 and 16 volts.
- Fuel pressure solenoid is ON.
- Turbocharger wastegate solenoid is OFF.
- More than 1 second has elapsed after the above mentioned conditions have been met.

Judgment Criteria

• The fuel pressure solenoid coil surge voltage (battery positive voltage + 2 volts) is not detected for 1 second. When the fuel pressure solenoid is turned OFF.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Fuel pressure solenoid failed.
- Open or shorted fuel pressure solenoid circuit, harness damage, or connector damage.
- ECM failed.

DIAGNOSIS

Required Special Tools:

- MB991502: Scan Tool (MUT-II)
- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991911: Main Harness B

STEP 1. Using scan tool MB991502 or MB991958, check actuator test item 13: fuel pressure solenoid.

To prevent damage to scan tool MB991502 or MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991502 or MB991958.

- (1) Connect scan tool MB991502 or MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991502 or MB991958 to the actuator test mode for item 12, fuel pressure solenoid.
 - An operation sound should be heard and vibration should be felt when the fuel pressure solenoid is operated.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the solenoid operating properly?

- **YES :** It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/ Inspection Service Points P.00-6.
- NO: Go to Step 2.

STEP 2. Check harness connector B-28 at the fuel pressure solenoid for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 3.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

TSB Revision	
--------------	--

STEP 3 Check the fuel pressure solenoid.

(1) Disconnect the fuel pressure solenoid connector B-28.

(2) Measure the resistance between fuel pressure solenoid side connector terminal No. 1 and No. 2.

Standard value: 29 – 35 ohms [at 20°C (68°F)]

- Q: Is the resistance between 29 and 35 ohms [at 20°C (68°F)]?
 - YES : Go to Step 4.
 - **NO :** Replace the fuel pressure solenoid. Then go to Step 12.

STEP 4. Measure the power supply voltage at fuel pressure solenoid harness side connector B-28.

- (1) Disconnect connector B-28 and measure at the harness side.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 1 and ground.Voltage should measure battery positive voltage.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is battery positive voltage (approximately 12 volts) present?
 - YES : Go to Step 6. NO : Go to Step 5.

STEP 5. Check harness connector B-12X at MFI relay for damage.

Q: Is the harness connector in good condition?

- **YES :** Repair harness wire between MFI relay connector B-12X (terminal No. 4) and fuel pressure solenoid connector B-101 (terminal No. 1) because of open circuit or short circuit to ground. Then go to Step 12.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

STEP 6. Measure the power supply voltage at ECM connector C-121 by backprobing.

- (1) Do not disconnect connector C-121.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 3 and ground by backprobing.
 - Voltage should measure battery positive voltage.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is battery positive voltage (approximately 12 volts) present?
 - YES : Go to Step 9.
 - **NO :** Go to Step 7.

STEP 7. Check harness connector C-121 at ECM for damage.

- Q: Is the harness connector in good condition?
 - YES : Go to Step 8.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

TSB Revision

STEP 8. Check for open circuit and short circuit to ground between fuel pressure solenoid connector B-28 (terminal No. 2) and ECM connector C-121 (terminal No. 3). Q: Is the harness wire in good condition?

- **YES :** Replace the ECM. Then go to Step 12.
- **NO :** Repair it. Then go to Step 12.

CONNECTOR: C-121 HARNESS CONNECTOR: COMPONENT SIDE COMPONENT SIDE C-121 (Y) 1312 1110 9 8 7 6 5 4 3 2 1 2825 2423 22 21 20 19 18 17 16 15 14 AK203488AB

STEP 9. Check harness connector C-121 at ECM for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 10.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

STEP 10. Check for harness damage between MFI relay connector B-12X (terminal No. 4) and fuel pressure solenoid connector B-28 (terminal No. 1). Q: Is the harness wire in good condition?

- YES : Go to Step 11.
- **NO**: Repair it. Then go to Step 12.

STEP 11. Check for harness damage between fuel pressure solenoid connector B-28 (terminal No. 2) and ECM connector C-121 (terminal No. 3). Q: Is the harness wire in good condition?

- **YES** : Replace the ECM. Then go to Step 12.
- **NO :** Repair it. Then go to Step 12.

TSB Revision	
STEP 12. Perform the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to GROUP 13A, Diagnostic Function – OBD-II Drive Cycle – Procedure 6 – Other Monitor P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0090 set?

- **YES** : Repeat the troubleshooting.
- **NO :** The procedure is complete.

DTC P0101: VOLUME AIRFLOW CIRCUIT RANGE/PERFORMANCE PLOBLEM

Volume Airflow Sensor Circuit

AK203464

TSB Revision

CIRCUIT OPERATION

- The volume airflow sensor power is supplied from the MFI relay (terminal No. 4), and the ground is provided on the ECM (terminal No. 40).
- 5-volt power is applied to the volume airflow sensor output terminal (terminal No. 3) from the ECM (terminal No. 90). The volume airflow sensor generates a pulse signal when the output terminal and ground are opened/closed (opened/short).
- The volume airflow reset signal is input by the ECM (terminal No. 19) to the volume airflow sensor (terminal No. 7).

TECHNICAL DESCRIPTION

- While the engine is running, the volume airflow sensor outputs a pulse signal which corresponds to the volume of airflow.
- The ECM checks whether the frequency of this signal output by the volume airflow sensor while the engine is running is at or above the set value.
- When the throttle position sensor output voltage is low, the ECM causes the power transistor to be "ON" to send an airflow sensor reset signal to the airflow sensor. In response to the reset signal, the airflow sensor resets the filter circuit and improves the ability of the airflow sensor to measure the amount of air in a small air intake region.

DTC SET CONDITIONS

Check Conditions

- Throttle position sensor output voltage is 1.5 volts or higher.
- Engine speed is higher than 2,000 r/min.

Judgement Criteria

• Volume airflow sensor output frequency has continued to be 60 Hz or lower for 2 seconds.

Check Conditions

- Throttle position sensor output voltage is 2 volts or lower.
- Engine speed is lower than 2,000 r/min.

Judgement Criteria

• Volume airflow sensor output frequency has continued to be 1,000 Hz or higher for 2 seconds.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Volume airflow sensor failed.
- Open or shorted volume airflow sensor circuit, harness damage, or connector damage.
- ECM failed.
- Air leak between volume airflow sensor and throttle body.

TSB Revision	
--------------	--

DIAGNOSIS

Required Special Tools:

- MB991502: Scan Tool (MUT-II)
- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991911: Main Harness B

STEP 1. Using scan tool MB991502 or MB991958, check data list item 12: Volume Airflow Sensor.

To prevent damage to scan tool MB991502 or MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991502 or MB991958.

- (1) Connect scan tool MB991502 or MB991958 to the data link connector.
- (2) Start the engine and run at idle.
- (3) Set scan tool MB991502 or MB991958 to the data reading mode for item 12, Volume Airflow Sensor.
- (4) Warm up the engine to normal operating temperature: 80°C to 95°C (176°F to 203°F).
 - The standard value during idling should be 10 Hz or more.
 - When the engine is revved, the frequency should increase according to the increase in engine speed.

(5) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES :** It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/ Inspection Service Points P.00-6.
- NO: Go to Step 2.

CONNECTOR: B-105

STEP 2. Measure the reset signal voltage at volume airflow sensor connector B-105 by backprobing.

- (1) Do not disconnect connector B-105.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 7 and ground by backprobing.
- Voltage should measure between 6.0 and 9.0 volts.
 (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage between 6.0 and 9.0 volts?
 - YES : Go to Step 5.
 - NO: Go to Step 3.

STEP 3. Check connector B-105 at volume airflow sensor and connector C-121 at ECM for damage. Q: Is the connector in good condition?

- YES : Go to Step 4.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

|--|--|

STEP 4. Check for short circuit to ground between volume airflow sensor connector B-105 (terminal No. 7) and ECM connector C-121 (terminal No. 19).

Q: Is the harness wire in good condition?

- **YES :** Replace the volume airflow sensor. Then go to Step 9.
- **NO :** Repair it. Then go to Step 9.

STEP 5. Measure the reset signal voltage at volume airflow sensor connector B-105 by backprobing.

- (1) Do not disconnect connector B-105.
- (2) Start the engine and run at idle.

- (3) Measure the voltage between terminal No. 7 and ground by backprobing.
 - When the engine idling, voltage should measure 1.0 volt or less.
 - When the engine speed is 3,000 r/min, voltage should measure between 6.0 and 9.0 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the measured voltage within the specified range?

YES : Go to Step 8. **NO :** Go to Step 6.

STEP 6. Check harness connector B-105 at volume airflow sensor and harness connector C-121 at ECM for damage. Q: Is the harness connector in good condition?

- YES : Go to Step 7.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

STEP 7. Check for open circuit and harness damage between volume airflow sensor connector B-105 (terminal No. 7) and ECM connector C-121 (terminal No. 19). Q: Is the harness wire in good condition?

- **YES :** Replace the ECM. Then go to Step 9.
- **NO :** Repair it. Then go to Step 9.

TSB Revision	

STEP 8. Replace the volume airflow sensor.

- (1) Replace the volume airflow sensor.
- (2) Carry out a test drive with the drive cycle pattern. Refer to GROUP 13A, Diagnostic Function – OBD-II Drive Cycle – Procedure 6 – Other Monitor P.13A-6.
- (3) Check the diagnostic trouble code (DTC).

Q: Is DTC P0101 set?

- YES : Replace the ECM. Then go to Step 9.
- **NO**: The procedure is complete.

STEP 9. Perform the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to GROUP 13A, Diagnostic Function – OBD-II Drive Cycle – Procedure 6 – Other Monitor P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0101 set?

- **YES :** Repeat the troubleshooting.
- **NO :** The procedure is complete.

DTC P0102: VOLUME AIRFLOW CIRCUIT LOW INPUT

Volume Airflow Sensor Circuit

AK203464

CIRCUIT OPERATION

- The volume airflow sensor power is supplied from the MFI relay (terminal No. 4), and the ground is provided on the ECM (terminal No. 40).
- 5-volt power is applied to the volume airflow sensor output terminal (terminal No. 3) from the ECM (terminal No. 90). The volume airflow sensor generates a pulse signal when the output terminal and ground are opened/closed (opened/short).

TECHNICAL DESCRIPTION

- While the engine is running, the volume airflow sensor outputs a pulse signal which corresponds to the volume of airflow.
- The ECM checks whether the frequency of this signal output by the volume airflow sensor while the engine is running is at or above the set value.

DTC SET CONDITIONS

Check Conditions

• Engine speed is higher than 500 r/min.

Judgement Criteria

• Volume airflow sensor output frequency has continued to be 3.3 Hz or lower for 2 seconds.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Volume airflow sensor failed.
- Open or shorted volume airflow sensor circuit, harness damage or connector damage.
- ECM failed.

DIAGNOSIS

Required Special Tools:

- MB991502: Scan Tool (MUT-II)
- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991911: Main Harness B

STEP 1. Using scan tool MB991502 or MB991958, check data list item 12: Volume Airflow Sensor.

To prevent damage to scan tool MB991502 or MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991502 or MB991958.

- (1) Connect scan tool MB991502 or MB991958 to the data link connector.
- (2) Start the engine and run at idle.
- (3) Set scan tool MB991502 or MB991958 to the data reading mode for item 12, Volume Airflow Sensor.
- (4) Warm up the engine to normal operating temperature: 80°C to 95°C (176°F to 203°F).
 - The standard value during idling should be 10 Hz or more.
 - When the engine is revved, the frequency should increase according to the increase in engine speed.
- (5) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES :** It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/ Inspection Service Points P.00-6.
- NO: Go to Step 2.

STEP 2. Measure the power supply voltage at volume airflow sensor connector B-105 by backprobing.

- (1) Do not disconnect connector B-105.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 4 and ground by backprobing.
 - Voltage should measure battery positive voltage.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is battery positive voltage (approximately 12 volts) present?
 - YES : Go to Step 5.
 - NO: Go to Step 3.

STEP 3. Measure the power supply voltage at volume airflow sensor harness side connector B-105.

- (1) Disconnect connector B-105 and measure at the harness side.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 4 and ground.Voltage should measure battery positive voltage.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is battery positive voltage (approximately 12 volts) present?
 - YES : Go to Step 4.
 - **NO :** Repair harness wire between MFI relay connector B-12X (terminal No. 4) and volume airflow sensor connector B-105 (terminal No. 4) because of open circuit or short circuit to ground. Then go to Step 13.

TSB	Revision	

STEP 4. Check connector B-105 at the volume airflow sensor for damage.

Q: Is the connector in good condition?

- **YES :** Repair harness wire between MFI relay connector B-12X (terminal No. 4) and volume airflow sensor connector B-105 (terminal No. 4) because of harness damage. Then go to Step 13.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 13.

STEP 5. Check connector B-105 at volume airflow sensor for damage.

Q: Is the connector in good condition?

- YES : Go to Step 6.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 13.

CONNECTOR: B-105

STEP 6. Measure the sensor supply voltage at volume airflow sensor harness side connector B-105. (1) Disconnect connector B-105 and measure at the harness side.

(2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 3 and ground.
 Voltage should measure between 4.8 and 5.2 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the measured voltage between 4.8 and 5.2 volts? YES : Go to Step 9.

NO : Go to Step 7.

TSB Revision	
--------------	--

STEP 7. Check harness connector C-115 at ECM for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 8.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 13.

STEP 8. Check for short circuit to ground between volume airflow sensor connector B-105 (terminal No. 3) and ECM connector C-115 (terminal No. 90).

- Q: Is the harness wire in good condition?
 - YES : Replace the ECM. Then go to Step 13.
 - NO: Repair it. Then go to Step 13.

- harness side connector B-105.
- (1) Disconnect connector B-105 and measure at the harness side.

AKX01409AJ

CONNECTOR: B-105

- (2) Check for the continuity between terminal No. 5 and ground.
 - Should be less than 2 ohms.
- **Q: Does continuity exist?**
 - YES : Go to Step 12.
 - NO: Go to Step 10.

STEP 10. Check harness connector C-119 at ECM for damage.

- **Q**: Is the harness connector in good condition?
 - YES : Go to Step 11.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 13.

I SD REVISION

HARNESS CONNECTOR: COMPONENT SIDE

HARNESS CONNECTOR: COMPONENT SIDE

38 37 36 35 34 33 32 31 46 45 44 43 42 41 40 39

CONNECTOR: C-119

8 37 36 35 34 33 32 31 6 45 44 43 42 41 40 39

C-119 (Y)

C-119 (Y)

AK203646AB

AK203646AB

STEP 11. Check for open circuit and harness damage between volume airflow sensor connector B-105 (terminal No. 5) and ECM connector C-119 (terminal No. 40). Q: Is the harness wire in good condition?

- **YES :** Replace the ECM. Then go to Step 13.
- NO: Repair it. Then go to Step 13.

- **YES :** Replace the volume airflow sensor. Then go to Step 13.
- **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 13.

STEP 13. Perform the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to GROUP 13A, Diagnostic Function – OBD-II Drive Cycle – Procedure 6 – Other Monitor P.13A-6.
- (2) Check the diagnostic trouble code (DTC).
- Q: Is DTC P0102 set?
 - YES : Repeat the troubleshooting.
 - **NO :** The procedure is complete.

DTC P0106: BAROMETRIC PRESSURE CIRCUIT RANGE/PERFORMANCE PROBLEM

Barometric Pressure Sensor Circuit

CONNECTOR: B-105 BAROMETRIC PRESSURE SENSOR CONNECTOR B-105 (B) 2 B-105 (B) 2 AK203495AC

CIRCUIT OPERATION

- A 5-volt voltage is supplied to the barometric pressure sensor power terminal (terminal No. 1) from the ECM (terminal No. 81). The ground terminal (terminal No. 5) is grounded with ECM (terminal No. 40).
- A voltage that is proportional to the atmospheric pressure is sent to the ECM (terminal No. 85) from the barometric pressure sensor output terminal (terminal No. 2).

TECHNICAL DESCRIPTION

- The barometric pressure sensor outputs a voltage which corresponds to the barometric pressure.
- The ECM checks whether this voltage is within a specified range.

DTC SET CONDITIONS

Check Conditions

• Barometric pressure is lower than 76 kPa (11 psi).

Judgement Criteria

- During 15 times of driving, the changes in the sensor output voltage should measure 0.015 volt [equivalent to 0.4 kPa (0.06 psi)] or less.
- Make sure that the engine coolant temperature is 72°C (160°F) or higher during each of the 15 times of driving. Also, during each of the 15 times of driving, make sure that after the engine has been started, the engine coolant temperature has increased for 23°C (40°F) or higher.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Barometric pressure sensor failed.
- Open or shorted barometric pressure sensor circuit, harness damage, or connector damage.
- ECM failed.

DIAGNOSIS

Required Special Tools:

- MB991502: Scan Tool (MUT-II)
- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991911: Main Harness B

STEP 1. Using scan tool MB991502 or MB991958, read the diagnostic trouble code (DTC).

To prevent damage to scan tool MB991502 or MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991502 or MB991958.

- (1) Connect scan tool MB991502 or MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Read the DTC.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is DTC P0107 set?

- **YES :** Refer to, DTC P0107 Barometric Pressure Circuit Low Input P.13A-59.
- NO: Go to Step 2.

- Q: Is the connector in good condition?
 - YES : Go to Step 3.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

- STEP 3. Check for continuity at barometric pressure sensor harness side connector B-105.
- (1) Disconnect connector B-105 and measure at the harness side.

- (2) Check for the continuity between terminal No. 5 and ground.
 - Should be less than 2 ohms.
- **Q: Does continuity exist?**
 - YES : Go to Step 6.
 - NO: Go to Step 4.

STEP 4. Check harness connector C-119 at ECM for damage.

- **Q**: Is the harness connector in good condition?
 - YES : Go to Step 5.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

AKX01409AJ

TSB	Revision

STEP 5. Check for open circuit and harness damage between barometric pressure sensor connector B-105 (terminal No. 5) and ECM connector C-119 (terminal No. 40).

Q: Is the harness wire in good condition?

- **YES :** Replace the ECM. Then go to Step 9.
- NO: Repair it. Then go to Step 9.

C-119 (Y)

AK203646AB

HARNESS CONNECTOR: COMPONENT SIDE

> 38 37 36 35 34 33 32 31 46 45 44 43 42 41 40 39

STEP 6. Check harness connector C-115 at ECM for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 7.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

STEP 7. Check for open circuit and harness damage between barometric pressure sensor connector B-105 and ECM connector C-115.

Q: Is the harness wire in good condition?

- YES : Go to Step 8.
- NO: Repair it. Then go to Step 9.

STEP 8. Replace the barometric pressure sensor.

- (1) Replace the barometric pressure sensor.
- (2) Carry out a test drive with the drive cycle pattern. Refer to GROUP 13A, Diagnostic Function – OBD-II Drive Cycle – Procedure 6 – Other Monitor P.13A-6.
- (3) Check the diagnostic trouble code (DTC).

Q: Is DTC P0106 set?

- YES : Replace the ECM. Then go to Step 9.
- **NO :** The procedure is complete.

STEP 9. Perform the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to GROUP 13A, Diagnostic Function – OBD-II Drive Cycle – Procedure 6 – Other Monitor P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0106 set?

- YES : Repeat the troubleshooting.
- NO: The procedure is complete.

TSB	Revision	

DTC P0107: BAROMETRIC PRESSURE CIRCUIT LOW INPUT

Barometric Pressure Sensor Circuit

CIRCUIT OPERATION

 A 5-volt voltage is supplied to the barometric pressure sensor power terminal (terminal No. 1) from the ECM (terminal No. 81). The ground terminal (terminal No. 5) is grounded with ECM (terminal No. 40).

ଚ

AK203495AC

• A voltage that is proportional to the atmospheric pressure is sent to the ECM (terminal No. 85) from the barometric pressure sensor output terminal (terminal No. 2).

TECHNICAL DESCRIPTION

• The barometric pressure sensor outputs a voltage which corresponds to the barometric pressure.

C-119(Y)

AK203487AD

The ECM checks whether this voltage is within a specified range.

DTC SET CONDITIONS

Check Conditions

- 2 seconds or more have passed since the starting sequence was completed.
- Battery positive voltage is higher than 8 volts.

Judgement Criteria

 Barometric pressure sensor output signal has continued to be approximately 49 kPa (7.2 psi) or lower (approximately 15,000 ft above sea level) for 10 seconds.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Barometric pressure sensor failed.
- Open or shorted barometric pressure sensor circuit, harness damage, or connector damage.
- ECM failed.

DIAGNOSIS

Required Special Tools:

- MB991502: Scan Tool (MUT-II)
- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991911: Main Harness B

STEP 1. Using scan tool MB991502 or MB991958, check data list item 25: Barometric Pressure Sensor.

To prevent damage to scan tool MB991502 or MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991502 or MB991958.

- (1) Connect scan tool MB991502 or MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991502 or MB991958 to the data reading mode for item 25, Barometric Pressure Sensor.
 - When altitude is 0 m (0 foot), 101 kPa (29.8 in.Hg).
 - When altitude is 600 m (1,969 feet), 95 kPa (28.1 in.Hg).
 - When altitude is 1,200 m (3,937 feet), 88 kPa (26.0 in.Hg).
 - When altitude is 1,800 m (5,906 feet), 81 kPa (23.9 in.Hg).

(4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES :** It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/ Inspection Service Points P.00-6.
- NO: Go to Step 2.

TSB Revision

B-105 HARNESS CONNECTOR: HARNESS SIDE

STEP 2. Measure the sensor output voltage at barometric pressure sensor connector B-105 by backprobing.

- (1) Do not disconnect connector B-105.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 2 and ground by backprobing.
 - When altitude is 0 m (0 foot), voltage should measure 3.7 and 4.3 volts.
 - When altitude is 600 m (1,969 feet), voltage should measure 3.4 and 4.0 volts.
 - When altitude is 1,200 m (3,937 feet), voltage should measure 3.2 and 3.8 volts.
 - When altitude is 1,800 m (5,906 feet), voltage should measure 2.9 and 3.5 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the measured voltage within the specified range?

YES: Go to Step 3. **NO**: Go to Step 7.

AK000281AH

STEP 3. Measure the sensor output voltage at ECM connector C-115 by backprobing.

- (1) Do not disconnect connector C-115.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 85 and ground by backprobing.
 - When altitude is 0 m (0 foot), voltage should measure 3.7 and 4.3 volts.
 - When altitude is 600 m (1,969 feet), voltage should measure 3.4 and 4.0 volts.
 - When altitude is 1,200 m (3,937 feet), voltage should measure 3.2 and 3.8 volts.
 - When altitude is 1,800 m (5,906 feet), voltage should measure 2.9 and 3.5 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the measured voltage within the specified range?

- YES : Go to Step 4.
- **NO :** Go to Step 6.

HARNESS CONNECTOR:

COMPONENT SIDE

81 80 79 78 77 76 75 74 73 72 71 92 91 90 89 88 87 86 85 84 83 82

C-115 (Y)

AK203645AB

STEP 4. Check harness connector B-105 at the barometric pressure sensor and harness connector C-115 at ECM for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 5.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 18.

STEP 5. Using scan tool MB991502 or MB991958, check data list item 25: Barometric Pressure Sensor.

To prevent damage to scan tool MB991502 or MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991502 or MB991958.

- (1) Connect scan tool MB991502 or MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991502 or MB991958 to the data reading mode for item 25, Barometric Pressure Sensor.
 - When altitude is 0 m (0 foot), 101 kPa (29.8 in.Hg).
 - When altitude is 600 m (1,969 feet), 95 kPa (28.1 in.Hg).
 - When altitude is 1,200 m (3,937 feet), 88 kPa (26.0 in.Hg).
 - When altitude is 1,800 m (5,906 feet), 81 kPa (23.9 in.Hg).
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- YES : It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/ Inspection Service Points P.00-6.
- NO: Replace the ECM. Then go to Step 18.

CONNECTOR: C-115 HARNESS CONNECTOR: CONNECTOR: COMPONENT SIDE B180797877767574737271 921919089188878685848382 AK203645AB

Q: Is the harness connector in good condition?

- YES : Repair harness wire between barometric pressure sensor connector B-105 (terminal No. 2) and ECM connector C-115 (terminal No. 85) because of open circuit or harness damage. Then go to Step 18.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 18.

- (1) Do not disconnect connector B-105.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 1 and ground by backprobing.
 - Voltage should measure between 4.8 and 5.2 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage between 4.8 and 5.2 volts?
 - YES : Go to Step 12. NO : Go to Step 8.

AK000283AH

STEP 8. Measure the sensor supply voltage at ECM connector C-115 by backprobing.

- (1) Do not disconnect connector C-115.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 81 and ground by backprobing.
 - Voltage should measure between 4.8 and 5.2 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage between 4.8 and 5.2 volts?
 - YES : Go to Step 9.
 - NO: Go to Step 10.

STEP 9. Check harness connector B-105 at the barometric pressure sensor and harness connector C-115 at ECM for damage.

- Q: Is the harness connector in good condition?
 - **YES :** Repair harness wire between barometric pressure sensor connector B-105 (terminal No. 1) and ECM connector C-115 (terminal No. 81) because of open circuit or harness damage. Then go to Step 18.
 - **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 18.

B-105 (B)

CONNECTOR: B-105

<u>{7}6<u></u>15<u>1</u>4<u>1</u>3<u>12</u><u>1</u><u>1</u> HARNESS CONNECTOR:</u>

CONNECTOR: B-105 CONNECTOR: B-105 CONNECTOR: C-115 CONNECTOR: C-115

- **Q**: Is the harness connector in good condition?
 - YES : Go to Step 11.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 18.

STEP 11. Check for short circuit to ground between barometric pressure sensor connector B-105 (terminal No. 1) and ECM connector C-115 (terminal No. 81). Q: Is the harness wire in good condition?

- **YES :** Replace the ECM. Then go to Step 18.
- NO: Repair it. Then go to Step 18.

CONNECTOR: B-105

STEP 12. Measure the ground voltage at barometric pressure sensor connector B-105 by backprobing.

- (1) Do not disconnect connector B-105.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 5 and ground by backprobing.
 - Voltage should measure 0.5 volt or less.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the measured voltage 0.5 volt or less?

- YES : Go to Step 15.
- NO: Go to Step 13.

HARNESS CONNECTOR: COMPONENT SIDE

> 38 37 36 35 34 33 32 31 46 45 44 43 42 41 40 39

CONNECTOR: B-105 B-105 (B) TYGE 554332211 HARNESS CONNECTOR: COMPONENT SIDE CONNECTOR: C-119

C-119 (Y)

AK203646AB

STEP 13. Check harness connector B-105 at the barometric pressure sensor and harness connector C-119 at ECM for damage.

- **Q**: Is the harness connector in good condition?
 - YES : Go to Step 14.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 18.

HARNESS CONNECTOR: COMPONENT SIDE

> 38|37|36|35|3<mark>4|33|32|31</mark> 46|45|44|43|42|41|40|39

STEP 14. Check for harness damage between barometric pressure sensor connector B-105 (terminal No. 5) and ECM connector C-119 (terminal No. 40).

Q: Is the harness wire in good condition?

- **YES :** Replace the ECM. Then go to Step 18.
- NO: Repair it. Then go to Step 18.

YES : Go to Step 16.

NO : Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 18.

C-119 (Y)

AK203646AB

CONNECTOR: B-105

<u>{7 % 6 % 5 % 4 % 3 % 2</u>

STEP 16. Check harness connector C-115 at ECM for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 17.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 18.

STEP 17. Check for short circuit to ground and harness damage between barometric pressure sensor connector B-105 (terminal No. 2) and ECM connector C-115 (terminal No. 85).

- Q: Is the harness wire in good condition?
 - **YES :** Replace the volume airflow sensor. Then go to Step 18.
 - NO: Repair it. Then go to Step 18.

B-105 (B)

₼₹

STEP 18. Perform the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to GROUP 13A, Diagnostic Function – OBD-II Drive Cycle – Procedure 6 – Other Monitor P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0107 set?

- **YES :** Repeat the troubleshooting.
- **NO :** The procedure is complete.
DTC P0108: BAROMETRIC PRESSURE CIRCUIT HIGH INPUT

B-105 (MU802552) \bowtie BAROMETRIC PRESSURE SENSOR 1 2 3 4 5 6 7 (INCORPORATED IN VOLUME AIR FLOW SENSOR) 1 2 5 YELLOW-BLUE BLACK GRAY 81 40 85 C-115 C-119 (MU801823) (MU801822) 31 32 33 34 35 36 37 38 71 72 73 74 75 76 77 78 79 80 81 ≨ ĺ 39 40 41 42 43 44 45 46 82 83 84 85 86 87 88 89 90 91 92 π 5V ENGINE CONTROL MODULE (ECM)

Barometric Pressure Sensor Circuit

AK203497

CIRCUIT OPERATION

- A 5-volt voltage is supplied to the barometric pressure sensor power terminal (terminal No. 1) from the ECM (terminal No. 81). The ground terminal (terminal No. 5) is grounded with ECM (terminal No. 40).
- A voltage that is proportional to the atmospheric pressure is sent to the ECM (terminal No. 85) from the barometric pressure sensor output terminal (terminal No. 2).

TECHNICAL DESCRIPTION

- The barometric pressure sensor outputs a voltage which corresponds to the barometric pressure.
- The ECM checks whether this voltage is within a specified range.

TSB	Revision		

DTC SET CONDITIONS

Check Conditions

- 2 seconds or more have passed since the starting sequence was completed.
- Battery positive voltage is higher than 8 volts.

Judgement Criteria

• Barometric pressure sensor output signal has continued to be approximately 113 kPa (16 psi) or higher (approximately 4,000 ft below sea level) for 10 seconds.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Barometric pressure sensor failed.
- Open barometric pressure sensor circuit, or connector damage.
- ECM failed.

DIAGNOSIS

Required Special Tools:

- MB991502: Scan Tool (MUT-II)
- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991911: Main Harness B

STEP 1. Using scan tool MB991502 or MB991958, check data list item 25: Barometric Pressure Sensor.

To prevent damage to scan tool MB991502 or MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991502 or MB991958.

- (1) Connect scan tool MB991502 or MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991502 or MB991958 to the data reading mode for item 25, Barometric Pressure Sensor.
 - When altitude is 0 m (0 foot), 101 kPa (29.8 in.Hg).
 - When altitude is 600 m (1,969 feet), 95 kPa (28.1 in.Hg).
 - When altitude is 1,200 m (3,937 feet), 88 kPa (26.0 in.Hg).
 - When altitude is 1,800 m (5,906 feet), 81 kPa (23.9 in.Hg).

(4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES :** It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/ Inspection Service Points P.00-6.
- NO: Go to Step 2.

TSB Revision

B-105 HARNESS CONNECTOR:

HARNESS SIDE

172734576771

AKX01520AH

- STEP 2. Measure the sensor output voltage at barometric pressure sensor connector B-105 by backprobing.
- (1) Do not disconnect connector B-105.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 2 and ground by backprobing.
 - When altitude is 0 m (0 foot), voltage should measure 3.7 and 4.3 volts.
 - When altitude is 600 m (1,969 feet), voltage should measure 3.4 and 4.0 volts.
 - When altitude is 1,200 m (3,937 feet), voltage should measure 3.2 and 3.8 volts.
 - When altitude is 1,800 m (5,906 feet), voltage should measure 2.9 and 3.5 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the measured voltage within the specified range?

YES: Go to Step 3. **NO**: Go to Step 5.

CONNECTOR: B-105 B-105 (B) TZGI5413221 HARNESS CONNECTOR: COMPONENT SIDE AK203496AB

STEP 3. Check harness connector B-105 at the barometric pressure sensor and harness connector C-115 at ECM for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 4.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

STEP 4. Using scan tool MB991502 or MB991958, check data list item 25: Barometric Pressure Sensor.

To prevent damage to scan tool MB991502 or MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991502 or MB991958.

- (1) Connect scan tool MB991502 or MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991502 or MB991958 to the data reading mode for item 25, Barometric Pressure Sensor.
 - When altitude is 0 m (0 foot), 101 kPa (29.8 in.Hg).
 - When altitude is 600 m (1,969 feet), 95 kPa (28.1 in.Hg).
 - When altitude is 1,200 m (3,937 feet), 88 kPa (26.0 in.Hg).
 - When altitude is 1,800 m (5,906 feet), 81 kPa (23.9 in.Hg).
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- YES : It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/ Inspection Service Points P.00-6.
- **NO :** Replace the ECM. Then go to Step 12.

STEP 5. Measure the sensor supply voltage at barometric pressure sensor connector B-105 by backprobing.

- (1) Do not disconnect connector B-105.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 1 and ground by backprobing.
- Voltage should measure between 4.8 and 5.2 volts.
 (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage between 4.8 and 5.2 volts?
 - YES : Go to Step 7.
 - **NO :** Go to Step 6.

STEP 6. Check harness connector C-115 at ECM for damage.

Q: Is the harness connector in good condition?

- **YES :** Replace the ECM. Then go to Step 12.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

B-105 HARNESS CONNECTOR: HARNESS SIDE 1/2/3/4/5/6/7

STEP 7. Measure the ground voltage at barometric pressure sensor connector B-105 by backprobing.

- (1) Do not disconnect connector B-105.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 5 and ground by backprobing.
 - Voltage should measure 0.5 volt or less.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage 0.5 volt or less?
 - YES : Go to Step 10.
 - NO: Go to Step 8.

STEP 8. Check harness connector B-105 at the barometric pressure sensor and harness connector C-119 at ECM for damage.

- Q: Is the harness connector in good condition?
 - YES : Go to Step 9.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

TSB Revision

STEP 9. Check for open circuit between barometric pressure sensor connector B-105 (terminal No. 5) and ECM connector C-119 (terminal No. 40).

Q: Is the harness wire in good condition?

- **YES :** Replace the ECM. Then go to Step 12.
- **NO :** Repair it. Then go to Step 12.

CONNECTOR: B-105 B-105 (B) T7655433211 HARNESS CONNECTOR: COMPONENT SIDE AK203496AB

STEP 10. Check harness connector B-105 at barometric pressure sensor for damage.

- **Q**: Is the harness connector in good condition?
 - YES : Go to Step 11.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

TSB Revision	
--------------	--

STEP 11. Check harness connector C-119 at ECM for damage.

Q: Is the harness connector in good condition?

- **YES :** Replace the volume airflow sensor. Then go to Step 12.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

STEP 12. Perform the OBD-II drive cycle.

- (1) Carry out a test drive with the drive cycle pattern. Refer to GROUP 13A, Diagnostic Function – OBD-II Drive Cycle – Procedure 6 – Other Monitor P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0108 set?

- **YES :** Repeat the troubleshooting.
- **NO :** The procedure is complete.